How the folding rate constant of simple, single-domain proteins depends on the number of native contacts.

نویسندگان

  • Dmitrii E Makarov
  • Craig A Keller
  • Kevin W Plaxco
  • Horia Metiu
چکیده

Experiments have shown that the folding rate constants of two dozen structurally unrelated, small, single-domain proteins can be expressed in terms of one quantity (the contact order) that depends exclusively on the topology of the folded state. Such dependence is unique in chemical kinetics. Here we investigate its physical origin and derive the approximate formula ln(k) = ln(N) + a + bN, were N is the number of contacts in the folded state, and a and b are constants whose physical meaning is understood. This formula fits well the experimentally determined folding rate constants of the 24 proteins, with single values for a and b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact order, transition state placement and the refolding rates of single domain proteins.

Theoretical studies have suggested relationships between the size, stability and topology of a protein fold and the rate and mechanisms by which it is achieved. The recent characterization of the refolding of a number of simple, single domain proteins has provided a means of testing these assertions. Our investigations have revealed statistically significant correlations between the average seq...

متن کامل

Conformational entropic barriers in topology-dependent protein folding: perspectives from a simple native-centric polymer model

The ‘topology’ of a protein native structure refers to the pattern of noncovalent contacts among its amino acid residues. Diverse folding rates of natural small single-domain proteins are known to correlate well with simple parameters derived from these patterns. Here we extend our investigation of possible physical underpinning of this remarkable topology–rate relationship by applying continuu...

متن کامل

On the relation between native geometry and conformational plasticity.

In protein folding the term plasticity refers to the number of alternative folding pathways encountered in response to free energy perturbations such as those induced by mutation. Here we explore the relation between folding plasticity and a gross, generic feature of the native geometry, namely, the relative number of local and non-local native contacts. The results from our study, which is bas...

متن کامل

Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins.

The variation in folding rate among single-domain natural proteins is tremendous, but common models with explicit representations of the protein chain are either demonstrably insufficient or unclear as to their capability for rationalizing the experimental diversity in folding rates. In view of the critical role of water exclusion in cooperative folding, we apply native-centric, coarse-grained ...

متن کامل

A comparison of the folding kinetics of a small, artificially selected DNA aptamer with those of equivalently simple naturally occurring proteins.

The folding of larger proteins generally differs from the folding of similarly large nucleic acids in the number and stability of the intermediates involved. To date, however, no similar comparison has been made between the folding of smaller proteins, which typically fold without well-populated intermediates, and the folding of small, simple nucleic acids. In response, in this study, we compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2002